

CREST PROGRAM

Version 0.1

User’s guide

Crest Software License Agreement

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: INSTALLING THE SOFTWARE 2

CHAPTER 3: GETTING STARTED 3

CHAPTER 4: CREST DLL FUNCTION REFERENCE 6

CHAPTER 5: CONCLUSION 11

CONTACT INFORMATION 12

CHAPTER 1: INTRODUCTION

The Crest program is software to detect and track pedestrian in different scenarios and
indoor and outdoor environments.

System Requirements
To use the Crest Program, is necessary an IBM-compatible PC. To effectively run the
Crest Program it is recommended to have the following:

 1 GB of RAM
 Dual core processor.
 Bumblebee2 stereo camera

2

CHAPTER 2: INSTALLING THE SOFTWARE

The Crest program is software available in two different versions to offer flexibility to
the other user’s programs.

 This library can be added to an existent project. An example of how to interface with
the DLL file it is available on DLLInterface.h file.

Dynamic Library

 Minimal graphic interface. It provides the call to the camera and it executes the
processing of the input data.

Crest Program

To install the Crest software

1. Run the CrestInstaller and select the destination folder.

3

CHAPTER 3: GETTING STARTED

How to use the GUI

Execute the program from the installation folder. If it will be not possible to run the
program, an error message will appear (fig. 1).

Fig. 1 Example of error messages due to camera or configuration files problems.

If the program is properly installed and if there are no errors, a window form will
appear (fig. 2).
The menu is positioned on the top. Once Crest program is opened, only the setting menu
will be available. The setting windows are used to modify the program parameters. The
parameters can be adjusted only before the execution of the program. For a good
performance, change the setting of the camera parameters (height and pitch).
On the bottom of the window, are given important information as FPS, and messages
from the program as tracking information.
The checkbox “Use Server” allows the communication with a TCP/IP client. A demo
version of the client is available. The program won’t work asynchronously and it will
wait to communicate with the client.
In order to obtain the tracking data, it is necessary to check the “Use server” check box.
A C# client is available on ConsoleApplication.zip.
The program uses the NVIDIA processor and GPU to update the background. If the
GPU is available, a check will appear to the “Is GPGPU available” checkbox. If not
available the background will be updated using CPU.

4

Fig. 2 Crest program main window form

Under the menu, the play button runs the program. The main display will show the
rectified color acquired image. The pixel that will be analyzed will be highlighted in blue.
Instead pixels considered shadow will be green (fig. 3).

5

Fig. 3 Example of shadow and analyzed pixels highlighted on the image. In blue the
used pixels, in green the detected shadow.

In run mode it is possible to display also the tracking result and 3D window. The
windows are available on Windows menu. Tracking results and 3D view are shown in
fig.4.

Fig. 4 Example of tracking and 3D view display.

6

CHAPTER 4: CREST DLL FUNCTION REFERENCE

This chapter presents a detailed description of each function in the DLL.

The functions are gathered in a C++ class style. In the follow a description of all the
functions collected inside the DLL class.

All the pointers passed to the functions MUST be properly allocated before to make the
call. The standard resolution of the images is 320x240 for rectified images and 640x480
for raw images.

IMPORTANT

CrestError
Some of the Crest functions return an error value that indicates whether an error
occurred, and if it so what error. The following define type lists the kinds of errors that
may be returned.

Declaration
#define CREST_NOERROR 0x00000000
#define CREST_ERROR_CAMERANOTINSTALLED 0x00000001
#define CREST_ERROR_NOCONFIGFILE 0x00000101
#define CREST_ERROR_NOPARAMETERSFILE 0x00000102
#define CREST_ERROR_CUDANOTINITIALIZED 0x00000201

Elements
CREST_ERROR_CAMERANOTINSTALLED Unable to detect the camera
CREST_ERROR_NOCONFIGFILE Unable to load the configurations file
CREST_ERROR_NOPARAMETERSFILE Unable to load the parameters file
CREST_ERROR_CUDANOTINITIALIZED Unable to initialize CUDA

LoadConfigFiles
Load the configuration and parameters files. Return an error if it occurs.

Declaration
virtual int LoadConfigFiles();

7

Initialize
Initialize the Crest internal structures and allocate the memory.

Declaration
virtual int Initialize();

InitializeCuda
Initialize the structures and allocate the memory in order to use GPGPU. Return an
error code in the case of failure.

Declaration
virtual int InitializeCuda();

GrabImage
Grab a single image from the stereo camera. Return true in case of success.

Declaration
virtual bool GrabImage(int **tmp[2], unsigned char ***rgb, unsigned short
**depth_map, unsigned short **depth_map_original, unsigned char **image_rectified);

Elements
tmp Left and Right raw image (B/W)
rgb Rectified color image
depth_map Depth map
depth_map_original A copy of the depth map
image_rectified Rectified B/W image

Process
Provide to elaborate a single frame captured. Return true in the case of success.

Declaration
virtual bool Process();

8

GetCurrentOutputImage
Copy the current output image in a matrix. Return true in the case of success.

Declaration
virtual bool GetCurrentOutputImage(unsigned char ***rgb);

Elements
rgb Rectified color output image

GetCurrentTrackingImage
Copy the current tracking image represented by a top view map. The scale of the image
is proportionate to the dimension. Return true in case of success.

Declaration
virtual bool GetCurrentTrackingImage(unsigned char ***rgb, int depth_min, int
depth_max, int xmin, int xmax);

Elements
rgb Rectified color output image
depth_min Min range of the depth in the display
depth_max Max range of the depth in the display
ymin Min x position in the display
xmax Max x position in the display

GetNumMessages
Return the number of messages that the Crest program has in queue. The queue is
cleared any time the function Process is called.

Declaration
virtual int GetNumMessages();

9

GetMessage
Copy the indicated message.

Declaration
virtual void GetMessage(char *msg, int num_message);

Elements
msg Copy of the message
num_message ID of the message the user wants to copy.

GetNumTrackingMessages
Return the number of tracking messages the Crest program has in queue. The queue is
cleared any time the function Process is called

Declaration
virtual int GetNumTrackingMessages();

GetTrackingMessage
Copy the indicated message.

Declaration
virtual void GetTrackingMessage(char *msg, int num_message);

Elements
msg Copy of the message
num_message ID of the message the user wants to copy.

GetWorldCoordinate
Memorize in a vector the information relative to the image captured by the camera. The
size of the vector must be proportionate to the resolution.
The vector will contain 6 values for each pixel:
X coordinate, Y coordinate in the world coordinate, Z coordinate in the world coordinate,
red, green, and blue.

Declaration
virtual void GetWorldCoordinate(float *world_coordinate, float resolution);

10

Elements
world_coordinate Vector contains information of the image

like color and position in the world
coordiante.

resolution Image resolution [0, 1].

GetCurrentFrameNumber
Return the current internal frame number.

Declaration
virtual int GetCurrentFrameNumber();

GetTrackInformation
Copy the tracking information. An object that it is just detected but not tracked will
have a negative ID.

Declaration
virtual void GetTrackInformation(int *x, int *y, float *X, float *Y, float *Z, int *ID, const
int iMaxSize, int &iFoundObjects);

Elements
x Current x position in the image
y Current y position in the image.
X Current X position in the world

coordinates.
Y Current Y position in the world

coordinates.
Z Current Z position in the world

coordinates.
Id ID of the tracked object.
iMaxSize Max number of objects can be copied.
iFoundObjects Total number of found and tracked objects.

11

CHAPTER 5: CONCLUSION

Current Limitations for the program and DLL
Can be used only under windows OS, 32bit. The working systems known are WindowXP
and Vista.
Only Bumblebee2 camera can be used and requires Bumblebee2 drivers installed.

In the near future
Increase the support to other stereo vision system.
Increase performances. Offer multi-threading support.
Offer a better 3D navigation system.
Increase the compatibility with other OS.

12

CONTACT INFORMATION

For any questions, concerns or comments please contact us via the following
method:

Email:
crest@sensor.mech.chuo-u.ac.jp

